Testing the Furniture Dimension Match Levels with Anthropometry among Indian Working Women of Defence Laboratories

LR Varte, S Rawat, I Singh, D Majumdar

It is postulated that women employees in an office have increased risk of developing back pain due to the nature of their sedentary office work. Increased exposure to computers and related workstation, uncomfortable office furniture, types of jobs performed and the length of working hours/years have been identified as potential risk factors for back pain. Reasons for discomfort can be unchanging sitting position and/or a general lack of movement. In one study that investigated the incidence of back pain related to furniture dimension in Indian women, as much as 25.3% of the study population complained of back pain and for those who used the computer >6 hours daily, there was a statistically significant chance of developing back pain. Despite many reports on mismatch of furniture dimension leading to musculoskeletal disorders (MSD) in India, there is still no specific legislation or standard for the definition of the appropriate furniture characteristics to be used by office workers. This situation can be a consequence of both the lack of knowledge from the governmental authorities and the lack of a representative anthropometric database of the concerned population.

A total of 1072 women employees with a mean age of 40.2 (SD 10.6) years working in different research laboratories all over the country volunteered for this study. Seventeen laboratories were visited to obtain this sample size during 2009–2010. Five laboratories from Bangalore and Pune were classified as group A, nine laboratories from Delhi as group B, and three laboratories from Chandigarh and Dehradun formed group C. Laboratories were grouped together based mainly on their regional location proximity. All the subjects were given prior information about the study and signed informed consent was obtained. Anthropometric measurements such as stature, sitting shoulder height, popliteal height, hip width, thigh thickness, and buttock-popliteal length were measured using an anthropometer (GPM, Swiss). Seat height, seat width, seat depth, seat to desk clearance, backrest height, desk length, and desk breadth were measured with a retractable steel tape.

Data analysis computed descriptive statistics to describe the physical characteristics and furniture dimensions to evaluate the level of mismatch or match between the volunteers and the furniture used by them. A match criterion was defined between anthropometry and the median furniture dimensions (all 942 furniture were individually measured, hence the median
was considered for the equation). We re-
placed the office furniture measure in
each match criterion equation. Then, the
established limits and body dimensions
of the women were compared and three
categories were defined in the case of the
two-way equations: the limit was consid-
ered “Match” when the anthropometric
measure was between the limits; consid-
ered “High mismatch” when the minimum
limit of the criterion equation was higher
than the anthropometric measure; and
“Low mismatch” when the maximum limit
of the criterion equation was lower than
the anthropometric measure. For the one-
way equations only two categories or levels
were defined: “Match” and “Mismatch.”

Table 1 shows the furniture dimensions
for the three studied groups. Results indi-
cated that seat height, considered the
first point to be taken into account for any
furniture dimension design, was not ap-
propriate for the workers popliteal height
by as much as 49.13%, 53.87% and 12.97%
in the three studied groups, respectively.
It was also found that 49.35%, 48.48%
and 51.89% of hip width was mismatched
with their seat width in Lab A, in Lab B,
and in Lab C, respectively. Buttock pop-
litel length against the seat depth, thigh
thickness against seat to desk clearance,
hip width against seat width, back rest
height against sitting shoulder height,
showed higher level of mismatch between
anthropometry and furniture sizes. This
reflected that the dimensions of female
employees’ furniture were quite ill fitted to
their anthropometric body dimensions. Al-
though fatigue may be caused by sitting for
long periods and long duration of mental
concentration, mismatch between the fur-
niture and body dimensions may intensify
the problem of fatigue. Studies have shown
that any deviation of dimensions of furni-
ture from the anthropometric dimensions
may cause physiological and biomechani-
cal load on the musculoskeletal system.

Therefore, a study on the present nature
of working Indian women in relation to
their anthropometric measurements and
furniture dimension is of paramount im-
portance.

The ability to adjust the chair height was
present in some chairs belonging to senior
officers. However, except for a few of them,
this feature was not used. Some used cush-
ions to adjust their sitting heights. Most of
the furniture measured had been in use for
some years. Only one laboratory reported
that they had redone their whole furniture
and acquired new ones. A common prob-
lem reported was the use of old furniture,
which had been purchased quite a long
time back. Changing the furniture by using
newer improved ergonomically designed
furniture can reduce the number of people
with musculoskeletal disease and cases of
mismatch. One way could be dissemina-
tion of information and awareness; anoth-
er is by small interventions. For example,
using a back cushion to sit and support the
back and using footrests to raise the foot
level. Overall, in our interactions with the
women workers, many did not know that a
slight adjustment of the computer screen
height or increase in sitting plane or re-
location of sitting angle could make their
workplace more comfortable and they re-
ported an improvement because of these
slight changes.

While there are several potential limi-
tations of the current study, this was the
first of its kind in the defence research and
development sector. We did not check if
the commercially available furniture in the
market would match the laboratory work-
ers anthropometry, though it is felt that
using ergonomically designed furniture
compatible to their body dimensions with
general awareness of ergonomic principle
could help in reducing musculoskeletal
disease. Ergonomic intervention in furni-
ture acquisition, design, both for male and
female employees in government sector is
lacking. Policy makers, government authorities, and R&D organizations can look into the aspect of undertaking a large scale representative anthropometric database of the working population, which is very much required in the organized sector, and much more so, in the unorganized sectors.

Conflicts of Interest: None declared.

References

Table 1: Furniture and anthropometric dimension of three studied laboratory groups. Values are 5th, 50th, and 95th percentiles.

<table>
<thead>
<tr>
<th>Furniture dimension (cm)</th>
<th>Group A (n=460)</th>
<th>Group B (n=297)</th>
<th>Group C (n=185)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat height (SH)</td>
<td>41.0, 46.0, 54.0</td>
<td>42.5, 46.0, 51.1</td>
<td>43.0, 46.0, 54.0</td>
</tr>
<tr>
<td>Seat width (SW)</td>
<td>42.5, 46.0, 53.0</td>
<td>42.0, 46.0, 50.6</td>
<td>42.2, 46.0, 50.0</td>
</tr>
<tr>
<td>Seat depth (SD)</td>
<td>40.0, 45.0, 51.0</td>
<td>41.0, 45.0, 50.0</td>
<td>40.0, 44.0, 50.26</td>
</tr>
<tr>
<td>Seat to desk clearance (SDC)</td>
<td>16.5, 27.3, 34.8</td>
<td>17.6, 26.3, 33.8</td>
<td>18.2, 26.6, 34.4</td>
</tr>
<tr>
<td>Backrest height (BKH)</td>
<td>36.0, 48.0, 62.0</td>
<td>29.0, 44.0, 63.4</td>
<td>39.2, 45.0, 57.0</td>
</tr>
<tr>
<td>Desk length (DL)</td>
<td>119.0, 150.0, 183.0</td>
<td>100.4, 136.0, 183.0</td>
<td>113.4, 138.0, 184.0</td>
</tr>
<tr>
<td>Desk breadth (DB)</td>
<td>60.0, 76.0, 93.0</td>
<td>60.0, 71.5, 92.0</td>
<td>60.0, 75.5, 93.0</td>
</tr>
</tbody>
</table>

Anthropometric measurements (cm)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Group A (n=460)</th>
<th>Group B (n=297)</th>
<th>Group C (n=185)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stature (ST)</td>
<td>144.59, 154.30, 164.02</td>
<td>146.70, 155.50, 164.60</td>
<td>145.04, 154.60, 164.96</td>
</tr>
<tr>
<td>Popliteal height (PH)</td>
<td>33.80, 36.00, 39.40</td>
<td>33.08, 36.00, 39.30</td>
<td>33.30, 35.90, 38.58</td>
</tr>
<tr>
<td>Buttock-popliteal length (BPL)</td>
<td>37.49, 41.60, 45.50</td>
<td>36.40, 40.70, 45.20</td>
<td>37.50, 40.60, 45.48</td>
</tr>
<tr>
<td>Sitting shoulder height (SSH)</td>
<td>49.69, 54.40, 59.30</td>
<td>51.30, 55.50, 60.20</td>
<td>51.42, 55.50, 59.88</td>
</tr>
<tr>
<td>Hip width (HW)</td>
<td>29.79, 34.50, 40.91</td>
<td>28.97, 33.10, 40.15</td>
<td>28.52, 33.10, 38.56</td>
</tr>
<tr>
<td>Thigh thickness (TT)</td>
<td>10.60, 13.30, 16.00</td>
<td>9.10, 12.60, 15.62</td>
<td>10.50, 12.60, 15.30</td>
</tr>
</tbody>
</table>