Indoor Radon in Micro-geological Setting of an Indigenous Community in Canada: A Pilot Study for Hazard Identification

Atanu Sarkar, Derek HC Wilton, Erica Fitzgerald

Abstract


Background: Radon is the second leading cause of lung cancer after smoking. In Canada, the health authorities have no access to comprehensive profile of the communities built over uranium-rich micro-geological settings. The present indoor radon monitoring guideline is unable to provide an accurate identification of health hazards due to discounting several parameters of housing characteristics.

Objective: To explore indoor radon levels in a micro-geological setting known for high uranium in bedrock and to develop a theoretical model for a revised radon testing protocol.

Methods: We surveyed a remote Inuit community in Labrador, located in the midst of uranium belt. We selected 25 houses by convenience sampling and placed electret-ion-chamber radon monitoring devices in the lowest levels of the house (basement/crawl space). The standard radon study questionnaire developed and used by Health Canada was used.

Results: 7 (28%) houses had radon levels above the guideline value (range 249 to 574 Bq/m3). Housing characteristics, such as floors, sump holes, ventilation, and heating systems were suspected for high indoor radon levels and health consequences.

Conclusion: There is a possibility of the existence of high-risk community in a low-risk region. The regional and provincial health authorities would be benefited by consulting geologists to identify potentially high-risk communities across the country. Placing testing devices in the lowest levels provides more accurate assessment of indoor radon level. The proposed protocol, based on synchronized testing of radon (at the lowest level of houses and in rooms of normal occupancy) and thorough inspection of the houses will be a more effective lung cancer prevention strategy.


Keywords


Radon; Radioactive hazard release; Geology; Radiation; lung cancer; Background radiation; Electromagnetic radiation; Canada




 pISSN: 2008-6520
 eISSN: 2008-6814

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License